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Abstract

Geosocial networks (GSNs) have become an important branch of location-
based services since sharing information among friends is the additional fea-
ture to provide information based on user’s current location. The growing
popularity of location-based services contribute to the development of highly
customized and flexible utilities. However, providing the customized services
relates to collecting and storing a large amount of users’ information. In
this paper, we focus on the privacy preserving concern in publishing GSN
datasets. We introduce a new (k, l)-degree anonymization method to pre-
vent the re-identification attack in the published GSN dataset. The presented
method anonymizes user’s social relationships as well as location-based infor-
mation in GSN. We propose the new (k, l)-degree anonymization algorithm
which modifies the network structure with a sequence of edge editing op-
erations. Furthermore, a location entropy metric is used to measure the
importance of the visited locations in the edge selection procedure of the
algorithm. New edges are added preferably among the users who visited the
same places with significant importance to them. This may contribute to
making a real social tie between them in the future. Moreover, we explore
the usability of the algorithm by running experiments on real-world datasets.
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1. Introduction

The world-wide spreading of the smart devices users equipped with GPS
locators causes the development of various location based services (LBS).
Users of mobile devices are able to query the location providers and ben-
efit from corresponding LBS data during travelling or everyday activities.
The LBS data include navigation information, restaurant recommendation
or live traffic information. In return, the LBS customers provide the location
providers with a real-time information access to their current location. The
special branch of LBS are geosocial networks (GSNs) where sharing informa-
tion among friends is the additional feature to providing information based
on user’s current location.

The geosocial networks (GSNs) are social networks (SNs) extended with
a location attribute. The integrated location information enabling users
to share their visited location and recommendations of locations with their
friends. Users can check-in their current location, share their location with
friends, recommend services at their location or highlight nearby points of
interest.

GSNs play an important role in tourism. GSNs as well as other mo-
bile information and communication technologies are widely used by tourism
participants. In many aspects, GSNs have taken over the role of traditional
information centers. Being a global information source with unlimited access,
they influence behaviour of tourists and travellers. Therefore, tourists can
make quick and effective decisions while buying products of tourist services.
Another advantage of GSNs in comparison with traditional tourists centers
is that the offered information come from the tourists themselves. Sharing
wishes and complaints about travel-related services influences indirectly the
future development of the services.

Academic and industry research has recently gained information from
publishing SN datasets. Including the location information into GSNs makes
the datasets even more valuable. The dataset can be used in social, tourist or
marketing studies to analyze individual’s behaviour based not only on their
personal attributes, but also on their mobility (Cho et al., 2011; Fire et al.,
2012).

However, publishing GSN datasets may threaten the users’ privacy and
cause the identity disclosure, which means the leaking of the individual’s
identity from published records. An attacker, equipped with background
knowledge, can try to re-identify the target individual combining the records
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in the published dataset. The knowledge about the visited locations is as
valuable information as any knowledge about graph structure or target’s re-
lationships. Analyzing the set of user’s check-ins may reveal his/her other
personal information such as home or workplace locations (Golle and Par-
tridge, 2009; Pontes et al., 2012).

Anonymization enables providers to publish datasets while preserving pri-
vacy of individuals. The provider applies an anonymization method on the
datasets and publishes only its anonymized version. The issue of preventing
the identity disclosure in SNs has been widely studied (Casas-Roma et al.,
2017; Liu and Terzi, 2008; Hay et al., 2010; Chakraborty and Tripathy, 2016;
Medková, 2018). Nevertheless, collecting location information requires a spe-
cial approach while anonymizing the GSN dataset (Li et al., 2016). Previous
research studies (Li et al., 2016; Masoumzadeh and Joshi, 2013), dealing with
the identity disclosure problem in GSNs, proposed different anonymization
concepts based on k-anonymity.

In this paper, we introduce a new concept of (k, l)-degree anonymity for
the GSN dataset. The proposed (k, l)-degree anonymization method is based
on k-degree anonymization methods for SNs (Casas-Roma et al., 2017; Liu
and Terzi, 2008). The proposed algorithm is established on recently presented
properties of GSN (Gao et al., 2012; Cho et al., 2011; Scellato et al., 2011).
Moreover, the location entropy is considered as the measure of the popularity
of the visited locations.

In our proposed framework, GSN is represented by a graph G with two
kinds of nodes; location and user nodes, and two kind of edges; user-user links
and user-location links (see Figure 1a). User nodes and user-user links form
a subgraph GV and represents social relationships in GSN (see Figure 1b).
The user nodes, location nodes and user-location links represent information
about user’s checked-in locations. They are considered to form an affiliation
network HL (see Figure 1c). Generally, in the affiliation networks, users
are linked to groups of interest, and the groups are linked to their members
(Zheleva et al., 2009). In this paper, the groups of interest are locations, at
which at least one user has checked in.

The subgraphs GV and HL are anonymized separately using different edge
editing algorithms. The algorithm for anonymizing GV uses the location
information from HL, but it does not change the edge set of HL. Similarly,
the algorithm for anonymizing HL uses the relationship information from GV

and does not modify the structure of GV , as described in detail in Section 4.
By applying the anonymization algorithms, we obtain k-degree anonymous
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a) geosocial network G

b) social network GV c) affiliation network HL

Figure 1: Geosocial network graph G = (V,EV , L,EL) and its social and affiliation sub-
networks. The vertex set V , marked with blue dots, represents the set of user nodes. The
vertex set L, marked with red squares, represents the location nodes. The edge set EV ,
marked with blue full lines, represents the social relationships in the network, while the
edge set EL, marked with red dashed lines, represents users’ check-ins at locations.

social network G∗V and l-degree anonymous affiliation network H∗L. Thus, the
result of the whole method is (k, l)-degree anonymous geosocial network G∗.

The presence of location information in GSN enable us to improve the
previously presented algorithms for k-degree anonymization in SN (Liu and
Terzi, 2008; Casas-Roma et al., 2017) and introduce the new (k, l)-degree
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method for GSN anonymization. We propose the algorithm where the loca-
tion entropy metric is used for quantifying the importance of edges. More-
over, the concept of l-degree anonymous affiliation network as well as the
whole representation of GSN as a combination of social and affiliation net-
work is newly introduced in this paper.

The rest of the paper is arranged as follows. The previous research studies
on anonymization methods of the GSN data and k-degree anonymization
methods of the SN data are summarized in Section 2. Section 3 introduces
the (k, l)-anonymization method. The proposed algorithm is described in
detail in Section 4. The experimental results are presented in Section 5.
Finally, the paper is concluded in Section 6.

2. Related work

The methods, developed for anonymizing undirected and unlabeled graphs
representing SNs, usually anonymize the graph structure with modifying the
set of edges (Casas-Roma et al., 2017; Liu and Terzi, 2008), aggregating
the nodes into clusters (Hay et al., 2010) or adding artificial noise nodes
(Chakraborty and Tripathy, 2016). We propose a novel privacy preserving
approach for the GSN dataset, which is based on the edge editing method
for SN anonymization, well-known as a k-degree anonymization.

The k-degree anonymity was first introduced in (Liu and Terzi, 2008).
Liu and Terzi proposed a systematic framework for graph anonymization
to prevent the re-identification of individuals by an attacker with structural
background knowledge. They decomposed the problem into two parts: find-
ing a k-anonymized degree sequence and constructing a new anonymized
graph. At the first step, they proposed an algorithm to extract the degree
sequence d from the original graph G and find the k-anonymized degree se-
quence d∗. In the later step, d∗ was used to construct a new anonymized
graph G∗. Due to the k-anonymity property of d∗, the resultant graph G∗

was k-degree anonymous. In our experiments, we used the proposed Greedy
algorithm to discover an anonymized degree sequence for constructing the
subgraph G∗V . We add new heuristics to the Greedy algorithm to reduce the
total count of edge edits in GV , as it is described in detail in Subsection 4.1.

The following research (Hartung et al., 2014; Lu et al., 2012) improved the
k-degree anonymity approach in terms of speed by applying different kinds
of heuristics. Casas-Roma et al. (2017) introduced a k-degree anonymization
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algorithm based on univariate micro-aggregation to anonymize large net-
works. Their algorithm was experimentally shown to improve the k-degree
anonymization of SN in terms of the information loss and data utility. They
preserved the two-step approach and split the task into the problem of degree
sequence anonymization and graph modification. In the graph modification
algorithm, the neighbourhood centrality measure was used for quantifying
the edge relevance in the network and selecting auxiliary edges in the edge
editing operations. Our proposed social network modification algorithm is
based on their graph construction algorithm. Instead of using the neighbour-
hood centrality, we consider the set of the visited locations and their location
entropy.

The location entropy was introduced together with other location-based
measures for analyzing the social context of a geographic region in (Cranshaw
et al., 2010). They showed that there existed a positive relationship between
the entropy of the locations, which the user visited, and the number of social
ties, that the user had in the network. As presented in (Scellato et al., 2011),
the location entropy was exploited to define features for the link predictions in
GSN. They experimentally showed that sharing locations with a low entropy
value was an important indicator in establishing new relationships in the
network. In our framework, the location entropy is used to measure the
popularity of locations and their importance for visitors. the lower entropy
indicates greater importance for visitors. Additionally, when two users visit
the same location with the low entropy, they are more likely to make a social
tie in the network in the future (Cho et al., 2011). Thus, when it is necessary
to make a new link in the network, users visiting the same location with the
low entropy are preferred. It increases the probability that the anonymized
network resembles the future development of the network.

The concept of connecting the social network and its user’s attributes
using the affiliation network is presented in (Zheleva et al., 2009). They
stated that each SN co-existed with a two-mode affiliation network, in which
users were linked to the groups of interest, and the groups were linked to
their members. Moreover, they presented a generative model for social and
affiliation networks. They studied such groups that users had voluntarily
chosen to be part of them, for example, being in a book-reading club. They
did not focus on natural groups identified according to age or sex. In this
paper, users are formed into the groups according to the checked-in locations
in GSN. Users are in the group zi iff they visited the location zi. As far as we
know, this is the first study where GSN is represented with the combination
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of the undirected graph and the affiliation network.
Many approaches have been recently presented to handle different privacy

preserving problems in GSN. Possible types of attacks on GSNs as well as
the properties that should be satisfied in the privacy preserving GSN model
were introduced in (Carbunar et al., 2013). The privacy preserving issues,
related to gaining rewards for checking in at locations, were discussed in
(Carbunar et al., 2014). The problem of providing a social recommendation
while keeping the users’ social relations private, was addressed in (Liu and
Hengartner, 2013; Zhang et al., 2014). Rahman et al. (2013) introduced
a concept of location centric profiles, aggregating statistics built from the
profiles of users. Their framework guaranteed strong privacy to users and
correctness assurances to GSN providers.

The problem of preserving location privacy in GSNs was adressed in (Al-
rayes and Abdelmoty, 2016; Xue et al., 2017; Ma et al., 2018; Siddula et al.,
2018; Kotzanikolaou et al., 2016).

The theoretical framework for evaluating location privacy was proposed
in (Shokri et al., 2011). Shokri et al. formally define the terms of tracking
and localization attack on anonymous traces. Furthermore, they provided a
tool for evaluating the effectiveness of various location-privacy mechanisms.
The model is further developed in (Shokri et al., 2012) into the framework
that includes the adversarial knowledge into a privacy-preserving process.

The principles and existing approaches to preserve the location privacy
was summarized in (Wernke et al., 2014). The compact data structure based
on Bloom filters was designed to store the location information and preserve
the location privacy in (Calderoni et al., 2015). The research in (Alrayes
and Abdelmoty, 2016) focused on location content awarness in relation to
privacy on GSNs. Ma et al. in (Ma et al., 2018) proposed the algorithm to
preserve the user’s location privacy by replacing his/her location with circle
overlapping regions.

Unlike the previous studies focusing on spatio-temporal dimension of
GSNs, we consider different model of geosocial network which does not deal
with the timeline of visiting the locations. Hence, the adversary is not able
to compile the actual trace of the target user and perform the localization
attack. We focus on the spatial and social dimension of GSN data and the
identity disclosure problem in GSN.

The identity disclosure problem in the GSN datasets was addressed in (Li
et al., 2016; Masoumzadeh and Joshi, 2013). Both research studies focused on
the re-identification attack performed by an adversary with the background
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knowledge about user locations. Masoumzadeh and Joshi (2013) introduced
a top location representation and presented the concept of Lk-anonymity and
L2
k-anonymity based on k-anonymity. Moreover, they proposed a clustering

algorithms for anonymizing a GSN dataset. Clusters with at least k nodes
were created and an anonymized value was produced for each cluster. The
GSN datasets were represented as a 4-tuple graph, where each user was
assigned to one location value in the location domain. In our representation,
each user is usually assigned to multiple location values corresponding to the
number of the visited locations. Instead of clustering approach where the
locations are clustered into regions, we propose the edge editing algorithm
where the original location value is preserved.

In (Li et al., 2016), the GSN dataset was represented as a hypergraph. Li
et al. presented relaxations of Lk-anonymity and L2

k-anonymity called (k,m)-
anonymity and (k,m, l)-anonymity respectively. They proposed a two-step
anonymization algorithm to achieve the (k, l,m)-anonymity. In the first step,
locations were generalized and the location links were anonymized. In the
second step, only the social network links were modified.

Although we also anonymize GV and HL separately, the choice, which
subgraph is anonymized as the first one, is made during the run of the algo-
rithm. The first to process is the subgraph, which requires more structural
changes. The decision is made not only by the structure of G, but also by
the required level of anonymity given by parameters k and l.

3. Problem definition

In this study, the geosocial network is represented as a combination of
a social network describing the social relationships within the network and
an affiliation network describing the location information. For reference, the
summary of the notation, used throughout this paper, is included in Table 1.

Definition 3.1 (GSN dataset). The GSN dataset is described by graph G =
(V,EV , L, EL), where V = {v1, . . . , vn} is a set of vertices representing the
users connected within the GSN, EV ⊆ V ×V is a set of edges representing the
relationships among users, L = {z1, . . . , zm} is a set of vertices representing
the visited locations and EL ⊆ V × L is a set of edges representing the visits
of users in locations.

Let Θi = {z ∈ L; (vi, z) ∈ EL} denote the set of locations visited by
the user vi ∈ V . In case that the edge set EV is omitted, the bipartite
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graph HL = (V, L;EL) is an affiliation network of users and locations. Every
edge from EL connects a vertex from V to one from L. There is an edge
between the nodes v ∈ V and z ∈ L iff the user v visited the location z. On
the other hand, the graph GV = (V,EV ), describing the social interactions
among users, is a typical social network. Thus, (vi, vj) ∈ EV iff the user vi is
in the relationship with the user vj within the network G. An example of a
simple GSN and its social and affiliation network is shown in Figure 1. The
terms “check-in at location” and “visit a location” are used interchangeably
as well as the terms “node” and “vertex”.

The anonymization of G is done in two steps: anonymizing GV and
anonymizing HL. We used two parameters k and l for identifying the level of
anonymization in each subnetwork. The edge editing anonymization meth-
ods change only the edge sets and leave the node sets untouched. Since GV

and HL share only the node set V , the anonymization of HL has no impact
on the structure of GV and vice versa. The gained k-degree anonymized
social network G∗V and l-degree anonymized affiliation network H∗L results in
(k, l)-degree anonymous GSN network G∗ = (V,E∗V , L, E

∗
L).

The aim of the k-degree anonymization is to prevent an attacker from
re-identifying his/her target individual in the published dataset using the
background knowledge about the graph structure. Let assume that the at-
tacker knows the degree of his/her target node. When the graph structure is
changed in the way that all nodes have at least k−1 other nodes sharing the
same degree, then the probability of re-identifying attack equals to 1

k
. We

provide the definitions of k-degree anonymous vector and graph, proposed in
(Liu and Terzi, 2008).

Definition 3.2 (k-anonymous vector). A vector of integers u = (u1, . . . , un)
is k-anonymous, if every distinct value ui, i = 1, . . . , n, appears in u at least
k times.

Definition 3.3 (k-degree anonymous graph). A graph G = (V,E) is k-
degree anonymous if the degree sequence dG is k-anonymous. It means, that
for every vertex v ∈ V , there exist at least k − 1 other vertices v1, . . . vk−1

with the same degree, deg(v) = deg(v1) = · · · = deg(vk−1).

Figure 2 shows the small social network GV with the degree sequence
dV = (2, 1, 4, 1, 2, 5, 2, 4, 3, 2) and its 3-degree anonymized version G∗V with
the degree sequence d∗V = (2, 2, 4, 2, 2, 4, 2, 4, 2, 2). The 3-degree anonymized
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Notation Description
G = (V,EV , L, EL) geosocial network graph
V set of user nodes
n = |V | number of user vertices
L set of location nodes
EV user-user links
EL user-location links
GV = (V,EV ) social network; subgraph of G
HL = (V, L;EL) affiliation network; subgraph of G
v ∈ V user vertex/ user node/user
z ∈ L location vertex/ location node/location
(v1, v2) an edge connecting v1 and v2

G∗ anonymized G
Θi set of locations visited by the user vi
k parameter of k-degree anonymization of GV

l parameter of l-degree anonymization of HL

dV degree sequence of GV

dL degree sequence of location nodes in HL

deg(z) degree of a node z
C(z) a total number of check-ins that all users have at z
qi(z) a fraction of check-ins the user vi has at location z
E(z) location entropy of the location z
δV a vector indicating needed changes in dV
δ+
V set of vertices from V that have to increase their degree
δ−V set of vertices from V that have to decrease their degree
δ+
L set of vertices from L that have to increase their degree
σ(dV ) sum of all elements in dV

Table 1: Summary of the notation.

graph was obtained with four changes in the edge set. Two edges (v1, v6),
(v1, v9) have been removed and two edges (v1, v2), (v1, v4) have been added.

We introduce a new concept of the l-degree anonymous affiliation network.
The aim of the anonymization of HL is to prevent an attacker to re-identify
the target user using the background knowledge about the locations visited
by the target user. Let assume that the attacker knows a location zT , visited
by the target individual. If the location zT were not visited by other users,
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a) social network GV b) 3-degree anonymized social network G∗
V

Figure 2: Social network GV = (V,E) and its 3-degree anonymized version G∗
V . The

dashed red edges have been removed from E and the green bold edges have been added
to E to achieve the 3-degree anonymity.

then the attacker can surely connect the individual with its node within the
network. The number of users who visited the location equals to its degree
in HL. In case that the degree of every location is at least l, which means
that every location from L is connected with at least l users from V , then the
probability of re-identification attack is equal to 1

l
. The idea is formalized in

the following definition.

Definition 3.4 (l-degree anonymous affiliation network). Let H = (A,B;E)
be an affiliation network where A is a set of objects and B is a set of affilia-
tions. Then H is l-degree anonymous if ∀b ∈ B : deg(b) ≥ l.

Figure 3 shows a subgraph ĤL of the bipartite graph HL representing
a small affiliation network. The degree sequence of location nodes is dL =
(1, 2, 2, 1, 1, 1, 1, 1, 1, 1). The degree of all nodes has to be equal at least 2 to

create a 2-degree anonymous ĤL

∗
.

Let assume that the attacker has both structural and location information
about the target user. The attacker is considered to know the degree of the
target node in GV and one of the locations visited by the target user in HL.
We propose the following (k, l)-degree anonymous model of GSN to prevent
GSN from the re-identification attack.
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a) an affiliation network ĤL b) 2-degree anonymized affiliation network ĤL
∗

Figure 3: Affiliation network ĤL and its 2-degree anonymized version ĤL

∗
. The bold

green edges have been added to the edge set to achieve the 2-degree anonymity.

Definition 3.5 ((k, l)-degree anonymous GSN). A GSN G = (V,EV , L, EL)
is (k, l)-degree anonymous if the graph GV = (V,E) is k-degree anonymous
and the affiliation network HL = (V, L;EL) is l-degree anonymous. It means,
that for every user v ∈ V there exist at least k−1 other users v1, . . . vk−1 ∈ V
with the same number of relationships, deg(v) = deg(v1) = · · · = deg(vk−1),
and for every location z ∈ L there exist at least l users which visited it,
deg(z) ≥ l.

Finally, we provide the definition of the location-based feature called the
location entropy, introduced in (Cranshaw et al., 2010). The location entropy
is used for weighing locations in the social network modification algorithm
(see Subsection 4.2).

Definition 3.6 (Location entropy). Let z ∈ L be a location and C(z) be a
total number of check-ins that all users have at z. Let vi ∈ V , i = 1, . . . , n
be a user and ci(z) be the user’s number of check-ins at the location z. Then

qi(z) = ci(z)
C(z)

is a fraction of check-ins the user vi has at location z and

{q1(z), . . . , qn(z)} is a discrete probability distribution that the location z is
visited by a certain user. The location entropy of z is defined as follows:

E(z) = −
∑

i=1,...,n

qi(z) log qi(z)
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4. (k, l)-degree anonymization algorithm

The aim of the proposed algorithm is to anonymize G = (V,EV , L, EL).
We solve separately the k-degree anonymization of GV = (V,E) and l-degree
anonymization of HL = (V, L;EL). The two tasks are not completely in-
dependent on each other, since information stored in HL is used in the
anonymization method of GV and vice versa.

Let dV be a degree sequence ofGV . At first, we construct the k-anonymous
degree sequences d∗V using one of the previously presented degree sequence
anonymization algorithms (Liu and Terzi, 2008; Casas-Roma et al., 2017).
Let set δV = dV − d∗V to be a vector indicating which vertices from GV

must change their degree to fulfil the k-degree anonymity. For example, if
δV (1) = 2 and δV (2) = −3, then degV (v1) need to be decreased by 2 and
degV (v2) need to be increased by 3. The number of necessary modifications
in the graph GV equals to cV =

∑n
i=1 |δV (i)|.

Since the definition of l-degree anonymity requires nodes to have their
degree equalling or being greater than l, the number of necessary modifica-
tions of the edge set EL equals to cL =

∑
z∈δ+L

l − deg(z), where δ+
L = {z ∈

L; deg(z) < l}.
If cV ≤ cL, then GV is modified before HL with a Social network modifi-

cation algorithm with the location edge selection. The algorithm exploits the
location information which is stored in HL. Then HL is modified with an
Affiliation network modification algorithm. The algorithm searches for infor-
mation about the social ties in already anonymized G∗V . If cV > cL, HL is
anonymized as the first one and GV as the latter one. Thus, both parameters
k, l have an impact on the anonymization of both GV and HL.

4.1. Heuristics in degree anonymization algorithm

The social network modification algorithm is independent on the choice
of the degree sequence anonymization algorithm used for anonymizing dV .
In our implementation, the Greedy algorithm, introduced in (Liu and Terzi,
2008), was applied. We used the version of Greedy algorithm that consid-
ers a simultaneous edge addition and removal during the successive graph
modification.

Assuming the degree sequence dV is sorted in descending order, the Greedy
algorithm first forms a group consisting of the first k vertices with the highest
degrees. Then the degree of all vertices from the group is set to the same
value. The new value is the median value of the original degrees. Then
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the algorithm checks whether it is better to join the (k + 1)-th vertex into
the previously formed group or start a new group at position (k + 1). The
detailed description of the Greedy algorithm is omitted with reference to (Liu
and Terzi, 2008).

Since the degree distribution in SN is a power-law distribution as it is
presented in (Mislove et al., 2007), there are a few nodes with a very high
degree. Where the high-degree nodes are merged into one group with other
nodes, the highest degrees are very distant from the median. It causes remov-
ing a large amount of edges from GV in the graph modification algorithm,
which could not be always possible. Hence, after computing d∗V with the
Greedy algorithm, we slightly increase the anonymized degree value in a few
first groups. It increases the probability that d∗V is feasible and the original
graph can be modified with the edge editing operations to meet d∗V .

4.2. Social network modification algorithm with the location entropy selection

The graph modification algorithm with the location entropy selection is
based on the graph modification algorithm proposed in (Casas-Roma et al.,
2017). Let σ(dV ) be the sum of each element in dV , σ(dV ) =

∑n
i=1 dV (i),

and let σ(d∗V ) be the sum of each element in d∗V , σ(d∗V ) =
∑n

i=1 d
∗
V (i). We

create a set of vertices which have to decrease their degree δ−V = {vi ∈
V ; δV (i) > 0} and the set of vertices which have to increase their degree
δ+
V = {vi ∈ V ; δV (i) < 0}.

In case that σ(d∗V ) < σ(dV ), the original graph is modified with sequence
of the edge removal operations. For every vertex vi ∈ δ−V , we select the most
suitable vertex vj ∈ δ−V in such a way that there exists an edge (vi, vj) ∈ EV
and remove the edge from EV . Therefore, the degree of both vertices has
decreased and δV (i) and δV (j) are increased by 1. The procedure is repeated
unless σ(d∗V ) = σ(dV ).

In case that σ(d∗V ) > σ(dV ), the original graph is modified with the
sequence of the edge addition operations. For every vertex vi ∈ δ+

V , we select
the most suitable vertex vj ∈ δ+

V such that (vi, vj) /∈ EV and add the edge
into EV .

When σ(d∗V ) = σ(dV ), the anonymized graph with d∗V is obtained with
the sequence of the edge switching operations. For every vertex vi ∈ δ−V ,
we select the most suitable neighbour vm ∈ V , (vi, vm) ∈ EV , and the most
suitable vj ∈ δ+

V such that (vm, vj) /∈ EV . Then (vi, vm) is removed from
EV and (vm, vj) is added to EV . Therefore, deg(vi) is decreased, deg(vj) is
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increased and deg(vm) does not change. The procedure is repeated with all
vi ∈ δ−V , unless dV = d∗V and δV = (0, . . . , 0).

In every graph modification step, it is necessary to select the most suitable
pair of vertices to remove the existing edge or add a new one. It is possible
to select the pairs of vertices at random or used the neighborhood centrality
properties of the network, it is as proposed in (Casas-Roma et al., 2017).
However, we decided to exploit the location information kept in the GSN.
Before every graph modification step, we investigate locations connected with
participating users vi, vj.

As it is presented in (Scellato et al., 2011), the location entropy is an
indicator of whether a certain location is likely to result in social ties among
its visitors. The locations with the low entropy might result in more social
links among their visitors than the locations with the higher entropy. Hence,
by linking the pairs of users who visited the same location with the low
entropy, we make connections that are likely to be really added to the network
in the future. When deg(vi) has to be increased during the edge addition
step for vi ∈ δ+

V , the suitable vertex vj ∈ δ+ is selected with the Minimal
entropy selection algorithm for edge addition (see Algorithm 1).

Algorithm 1 Minimal entropy selection for the edge addition

Input: vi ∈ δ+
V

Output: vx ∈ δ+
V

1: Set Wi = {vj ∈ δ+
V : (vi, vj) /∈ EV }.

2: Find vx = arg minvj∈Wi
(minz∈Θi∩Θj

E(z)).
3: return vx.

On the other hand, the locations with the low entropy are likely to be
places with significant importance for their visitors, such as a home place or
work office (Scellato et al., 2011). The locations with the high entropy are
likely to be public places. The information that two users visited a location
with a high entropy (e.g. railway station, shop), is less significant than
the information, that they visited low-entropy location (e.g. home or work
location). Hence, two users, who visited the same low entropy location, are
likely to have a strong social tie with each other. Removing the link between
them may cause a larger information loss then deleting the link among users,
who did not visit the same location or visited the same location with the high
entropy. Therefore, the links among users, who visit the same place with the
low entropy, are kept untouched in the edge removal procedure. Suitable
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vertices for the edge removal are selected with the Maximal entropy selection
algorithm for the edge removal, described in detail in Algorithm 2.

During the edge switch operation, both approaches are combined. At
first, the minimal entropy selection algorithm for the edge removal is used
to select the suitable neighbour, then the minimal entropy algorithm for the
edge addition is used to select a suitable vertex for the edge addition.

Algorithm 2 Maximal entropy selection for the edge removal

Input: vi ∈ δ−V
Output: vx ∈ δ−V

1: Set Wi = {vj ∈ δ−V : (vi, vj) ∈ EV }.
2: Set Wi = {vj ∈ Wi : Θi ∩Θj = ∅}.
3: if Wi 6= ∅ then
4: return random vx ∈ Wi.
5: else
6: Find vx = arg maxvj∈Wi

(maxz∈Θi∩Θj
E(z)).

7: return vx.
8: end if

4.2.1. Complexity

Let assume σ(dV ) < σ(d∗V ) without any loss of generality. Then the
algorithm requires adding new edges unless σ(dV ) = σ(d∗V ). Since a new
edge is created between two elements of δ+

V every edge addition step, every
additional step increases σ(dV ) with 2. Hence we need c = (|σ(dV )−σ(d∗V ))/2
simple edge additions to fulfil the condition σ(dV ) = σ(d∗V ).

Each addition step requires one run of Algorithm 1, where the most com-
plex step is the computation of minvj∈Wi

(minz∈Θi∩Θj
E(z)). As it is described

in Section 5, all values of E(z) are computed in the preprocessing step and
stored in HL. Moreover, before the individual vertices from δ+

V are processed,
we also compute minz∈Θi∩Θj

E(z) for every vi, vj ∈ δ+
V and store them in ma-

trix M of size |δ+
V | × |δ

+
V |. Therefore, the whole edge addition means to find

a minimum in M for c times, which implies the complexity O(c ∗ |δ+
V |2).

The computation of M requires to find the intersection of all visited
locations in HL for every pair of elements of δ+

V and find the minimum in the

intersection. Finding neighbours in HL is in O(d̂L), where d̂L is the maximum
degree of the user node in HL, the intersection of the neighbours sets is in
O(d̂L log d̂L) and finding the minimum O(d̂L). Overall, the computation of
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M is in O(|δ+
V | ∗ d̂L log d̂L). Moreover, the upper estimate for |δ+

V | is n and

the upper estimate for c is (d̂V ∗ n)/2, where d̂V is the maximal degree in
GV . Overall, the whole edge addition method is in O(d̂V ∗ n3).

Computing the complexity of the edge removal process is similar and gives
the same complexity O(d̂V ∗n3). In the edge switching method, the following
operations are done for every vi ∈ δ+

V : finding a set of neighbours NV in GV

(O(d̂V )), finding minz∈Θi∩Θj
E(z) for every vm ∈ NV (O(d̂V )) and sortingN in

the descend order according to the minimal entropy values (O(d̂V log d̂V )).
Moreover, for every vm ∈ NV we find Cm = {vj ∈ δ−V ; (vm, vj) /∈ EV }
(O(|δ−V | log |δ−V |)) and compute minz∈Θm∩Θj

E(z) for every vj ∈ Cm (O(|δ−V |)).
Estimating both |δ+

V | and |δ−V | with n, the whole edge switching method is in

O(d̂V ∗ n3 log n).

4.3. Affiliation network modification algorithm with the neighbourhood selec-
tion

The aim of the algorithm is to achieve l-degree anonymized bipartite
graph H∗L by modifying the original graph HL. According to Definition 3.4,
it is necessary to increase the degree of locations from the set δ+

L . The
straightforward solution is to select l − deg(z) vertices v ∈ V for every z ∈
δ+
L , such that (v, z) /∈ EL and add those edges to EL. The crucial part is

the selection of the most suitable vertices v ∈ V , as in the social network
modification algorithm.

As it is presented in (Cho et al., 2011), there is a correlation between the
relationship in GSN and the mobility of users. Moreover, the social ties were
used for predicting the user’s location. We observe the situation from the
terms of locations. Having a location z ∈ L, we look for a user vi ∈ V , who
is likely to visit z in the future. Let Wz = {v ∈ V : (v, z) ∈ EL}. Then the
most suitable vertex for the edge addition vi ∈ V , (vi, z) /∈ EL, is searched
among the vertices, that are connected with vertices from Wz in GV . More
precisely, the vi is a member of the set Wz = {v ∈ V : ∃w ∈ Wz : (v, w) ∈
EV & (v, z) /∈ EL}. The addition procedure is called the Neighbourhood
addition algorithm and is described in detail in Algorithm 3.

The Neighborhood addition algorithm finishes on the input z when deg(z) =
l or all vertices from Wz are linked with z. Hence, after the algorithm is run
on all z ∈ δ+

L , there can still be locations with deg(z) < l. Before adding
the rest of the links randomly, we reduce the number of newly added edges
with the sequence of the edge switching operations. The distribution of the
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Algorithm 3 Neighbour addition

Input: z ∈ δ+
L , EL, l

Output: modified EL
1: Set Wz = {v ∈ V : (v, z) ∈ EL}.
2: while deg(z) < l & Wz 6= ∅ do
3: Set vT ∈ Wz to be the user that has done the greatest number of

check-ins at location z among all users from Wz

4: Wz = Wz \ {vT}
5: Set NT,z = {v ∈ V ; (vT , v) ∈ EV & (v, z) /∈ EL}.
6: while deg(z) < l & NT,z 6= ∅ do
7: randomly select w ∈ NT,z

8: NT,z = NT,z \ {w}
9: EL = EL ∪ {(w, z)}

10: end while
11: end while

number of check-ins in GSN is power-law (Gao et al., 2012). A few locations
have many check-ins while most of the locations have few check-ins. Loca-
tions with a very high number of check-ins correspond to the locations with
a very high degree in HL. Moreover, we experimentally found that the high
degree locations have the high entropy. Thus they are likely to be locations
with insignificant importance for visitors. Thus, for every location zh with
the high degree, we randomly select a part of its edges and switch the loca-
tion node in them for some location node from δ+

L . The High degree switching
algorithm is described in detail in Algorithm 4.

Algorithm 4 High degree switching

Input: zh location with high degree, δ+
L , EL, pz

Output: modified EL
1: randomly select a subset Ezh ⊂ {(v, zh) ∈ EL; v ∈ V } such that |Ezh| <
pz

2: ∀(v, zh) ∈ Ezh : find z ∈ δ+
L such that (v, z) /∈ EL

3: remove (v, zh) from EL
4: add (v, z) into EL
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4.3.1. Complexity

For every z ∈ δ+
L we find a set of neighbours Wz, which takes O(m) steps

in the worst case, where m = |L|. All vT ∈ Wz are sorted in the descend
order according to the number of their check-ins qT (z). The sorting is in
O(d̂L log d̂L), where d̂L is the maximal degree of the location node in HL.
Then for every vT ∈ Wz, the following operations are done: the set NT,z is
set (O(n log n)) and at most l edges are added. Since the upper estimate
for d̂L is n and usually l < n, the complexity of the neighbour addition
is O(|δ+

L | ∗ m) + O(|δ+
L | ∗ n2 log n). Moreover, m is larger than n and |δ+

L |
can be estimated with m in the worst case. Hence the complexity equals
O(m2 ∗ n log n).

The high degree switching method is clearly less demanding than the
addition, since it deals only with few highly degree locations and it goes only
once through the set δ+

L .

5. Experimental results

In this section, the implementation of the algorithm and results of the
accomplished experiments with two real datasets are presented. All experi-
ments were performed on a PC running Windows 10 operating system with
16 GB RAM and 3,2 GHz processor. The programs were written in Matlab
9.6.0.1214997 (R2019a).

5.1. Tested networks and data preprocessing

We tested the algorithm on the datasets of real geosocial networks Gowalla
and Brightkite, where users shared their locations by checking-in. The
datasets were collected by Cho et al. in (Cho et al., 2011). Each dataset
is composed of two text documents, one containing the checked-in informa-
tion and the second the social ties in the network. Since the whole Gowalla
dataset contains nearly 200,000 nodes and over 6 million check-ins, our ex-
periments were run only on samples of both networks. The algorithm was
tested on several samples with a number of nodes between 1,101 and 10,101
and number of top locations between 2,154 and 19,317. Table 2 summarizes
the main characteristics of the tested networks.

Before the actual run of the algorithm, the data were preprocessed to
form two graphs GV and HL. The graph GV contained only the social rela-
tionships. On the other hand, the graph HL involved the user-location links,
the number of check-ins qi(z) that user vi had done at location z, the total
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Gowalla

|V | 1,101 2,101 3,101 4,101 5,101 10,101
|EV | 10,240 22,253 31,303 46,577 63,329 142,272
|L| 2,522 4,772 7,035 8,993 10,884 18,142
|EL| 2,886 5,371 7,956 10,364 12,785 22,622

Brightkite

|V | 1,101 2,101 3,101 4,101 5,101 10,101
|EV | 8,028 16,344 25,234 30,085 35,924 71,904
|L| 2,154 4,195 6,383 8,550 10,198 19,317
|EL| 2,778 5,435 8,112 10,765 13,059 25,267

Table 2: Sample characteristics of the Gowalla and Brightkite datasets used in the exper-
iments

number of check-ins at location z C(z) and the value of location entropy
E(z).The location entropy was computed using the relation in Definition 3.6.

5.2. Top location model

In real datasets, a large amount of locations is visited only once and is
meaningless for further data analysis. Thus, it is necessary to extract the
most representative locations for each user from the dataset. The (k, l)-
degree anonymization model, as well as the algorithm, were proposed with
no regards to the location model. The top location model, based on the
frequency of a user visit, was used in our implementation. For every user
the three locations with the highest C(z) were extracted from the data, pro-
cessed and stored in HL. The top location models were also used in recently
presented researches dealing with the k-anonymity of GSN (Li et al., 2016;
Masoumzadeh and Joshi, 2013). Although considering only the top locations
caused an information loss, the data are still valuable for a statistical analysis
and further research. Moreover, the top location model is not too large for
performing the (k, l)-degree anonymization within a reasonable time.

5.3. Measures

In order to evaluate our results, we use several structure metrics, pre-
sented in (Casas-Roma et al., 2017) and a metric for the information loss,
introduced in (Li et al., 2016). Since the graphs GV and HL were anonymized
separately, we separately evaluate the results of the anonymization process
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for GV and HL. The information loss measure and the average degree are
computed for both networks. The average distance, transitivity and the
largest eigenvalue of the adjacency matrix are computed only for the social
network since measuring them in the affiliation network is not valid.

Let G = (V,E) be a graph. The information loss zeb(G,G
∗) is defined as

the normalized cardinality of the symmetric difference between the original
edge set E and the modified edge set E∗:

zeb(G,G
∗) =

(E \ E∗) ∪ (E∗ \ E)

|E|

The average degree 〈deg〉(G) is the average of degrees of all nodes from
V in the graph G:

〈deg〉(G, V ) =

∑n
v∈V deg(v)

n

The average distance 〈dist〉(G) is an evaluation of connectivity. It is defined
as the average of the path lengths between each pair of vertices in G:

〈dist〉(G) =

∑n
i,j=1 dist(vi, vj)(

n
2

)
where dist(vi, vj) is the length of the shortest path from vi to vj, meaning
the number of edges along the path. The transitivity C(G) is a probability
of revealing the existence of tightly connected communities in the network.
It measures the presence of local loops near the vertex, as it is defined in
(Girvan and Newman, 2002):

C(G) =
3 ∗ (number of triangles on the graph)

(number of connected triples of vertices)

The largest eigenvalue λ(G) of the adjacency matrix of G is a spectral
measure which encodes the information about the cycles of the networks and
their diameter.

5.4. Results evaluation

Although the results for GV and HL are evaluated separately, the degree
sequence anonymization algorithm, social network modification algorithm
and affiliation network modification algorithm were processed as one run of
the (k, l)-degree anonymization algorithm with variables k, l, n where n =
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|V |. The domains of k and l are D(k) = {10, 20, 30, 40, 50} and D(l) =
{10, 20, 30, 40} respectively. The domain of n is shown in Table 2. Every
run of the algorithm, two parameters were fixed and the remaining one took
values from its domain.

We compare the output of the (k, l)-degree anonymization algorithm with
location and neighbourhood edge selection, as it is described in Section 4,
with the original data and the output of (k, l)-degree anonymization algo-
rithm with the random edge selection. In this modified version of the (k, l)-
degree anonymization algorithm, the auxiliary vertices needed for the edge
edition operations are selected randomly omitting the location entropy values
or neighbourhood of vertices. More precisely, in the social network modifi-
cation algorithm, the minimal entropy selection algorithms are omitted and
the auxiliary vertices for the edge addition, edge removal and edge switch are
selected randomly. In the affiliation network modification both neighbour
addition and high degree switching are omitted and new edges are added
randomly only according to the difference between deg(z) and l. In the rest
of the paper, the (k, l)-degree anonymization algorithm with the location
and neighbourhood edge selection is denoted LocEntNeighSel, while the
(k, l)-degree algorithm with random selection is denoted RandomSel.

Since the greedy algorithm, the maximal entropy selection and the neigh-
bourhood addition include the step where a vertex from a set is randomly
selected, the algorithm was run 20 times for every parameter setting. The
presented results are the average metric values of the 20 runs of the algo-
rithm. No metric varies considerably with the 20 runs of the algorithm. The
most varying values was the values of the transitivity. The relative standard
deviation of its values in the 20 runs was 2.7% in the worst case. The relative
standard deviation of the values of the other metrics in the 20 runs was under
1%.

The information loss is naturally increasing with the increasing param-
eters k and l, as it is shown in Figure 4. Figure 4a shows the increase of
zeb(GV , G

∗
V ) for growing k and fixed l = 10, n = 3101. The increase of

zeb(GV , G
∗
V ) is slower with the Brightkite data, RandomSel gets better re-

sults for both datasets. The zeb(GV , G
∗
V ) is quite good for all values of k,

even the worst case for Gowalla with k = 50 equals to 38%.
When k = 20 and n = 3101, then zeb(HL, H

∗
L) grows linearly in l for

both algorithms and both datasets, as it is shown in Figure 4b. Unfortu-
nately, the information loss is huge, even in the best case it equals 695%
with l = 10. There is no difference between the results of RandomSel and
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a) zeb(GV , G
∗
V ) with n = 3101, l = 10 b) zeb(HL, H

∗
L) with n = 3101, k = 20

c) zeb(GV , G
∗
V ) with k = 20, l = 10 d) zeb(HL, H

∗
L) with k = 20, l = 10

Figure 4: Information loss measurement.

LocEntNeighSel.
Fixing k = 20 and l = 10, we measured the dependency of zeb(GV , G

∗
V )

and zeb(HL, H
∗
L) on the size of the network n, as it is shown in Figure 4c)d).

Both zeb(GV , G
∗
V ) and zeb(HL, H

∗
L) decrease for Gowalla in growing n. For

Brightkite, the best results are also with n = 10, 101 for both graphs. The
explanation is that in larger networks, every user node is more likely to
meet other k − 1 vertices with the same degree and every location is more
likely to be visited by l users. Hence, the number of the necessary edge
edits decreases with growing n and fixed k and l for both GV and HL. It
indicates the algorithms’ usability in large networks. RandomSel shows
better results for both datasets. The reason for getting a smaller information
loss with RandomSel is that the edge edits equally distributed in the graph
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positively affect the data utility.

a) 〈deg〉(G∗
V , V ) with n = 3101, l = 10 b) 〈deg〉(G∗

V , V ) with k = 20, l = 10

c) 〈dist〉(G∗
V ) with n = 3101, l = 10 d) 〈dist〉(G∗

V ) with k = 20, l = 10

Figure 5: Average degree and average distance measurement for G∗
V .

On the other hand, LocEntNeighSel kept the structural measures C(G∗V ),
λ(G∗V ) and 〈deg〉(G∗V , V ) closed to the values of the original graph, mainly
for the Brightkite dataset, as it is shown in Figure 5 and Figure 6. Only
〈dist〉(G∗V ) provided better results with the random edge modifications. The
distance between the original and the LocEntNeighSel values was not grow-
ing with the increasing values of k or n. There is no worsening trend neither in
k nor n in any metric for LocEntNeighSel. It indicates the usability of Lo-
cEntNeighSel in large networks. On the other hand, the distance between
the original and the RandomSel values is visibly enlarging at 〈deg〉(G∗V , V )
and λ(G∗V ) with the growing k.

24



e) C(G∗
V ) with n = 3101, l = 10 f) C(G∗

V ) with k = 20, l = 10

g) λ(G∗
V ) with n = 3101, l = 10 h) λ(G∗

V ) with k = 20, l = 10

Figure 6: Transitivity and λ measurement for G∗
V .

In the affiliation network, we only measured the average degree of user
nodes 〈deg〉(H∗L, V ) and the average degree of location nodes 〈deg〉(H∗L, L),
as it is shown in Figure 7. In all cases, LocEntNeighSel provided slightly
better results, which is caused by the usage of switching operation. However,
the anonymized degree values were still about five times higher than the
original values, since the large amount of new edges was added into the
network. In future research, this could be solved by clustering locations into
larger regions according to their geographical coordinates before the actual
anonymization. It would cause a higher information loss in the preprocessing
stage, but it would improve the data utility in the anonymization process
since the initial degrees of regions would be higher.
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a) 〈deg〉(H∗
L, V ) with n = 3101, k = 20 b) 〈deg〉(H∗

L, V ) with k = 20, l = 10

c) 〈deg〉(H∗
L, L) with n = 3101, k = 20 d) 〈deg〉(H∗

L, L) with k = 20, l = 10

Figure 7: Average degree measurement for HL.

5.5. Runtime

The runtime was measured for the LocEntNeighSel algorithm with-
out the preprocessing stage. Within the 20 runs of the algorithm with the
same parameter setting, the runtime of one run of the algorithm varied in-
significantly. The relative standard deviation of the runtime was up to 2%.
Runtime values in Figure 8 are the average values of the runtimes in the 20
runs of the algorithm with the same parameter setting.

Following from the complexity computations, it grows fast with the grow-
ing n, as it is shown in Figure 8a. Nevertheless, the slowest computations
took around 50 minutes for the sample of the Gowalla data with 10,101
nodes. Hence, the algorithm is usable even for larger networks in real time.
The growing l implies only a small linear increase in runtime, as it is shown
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in Figure 8b. The networks structure has an impact on the dependence of
the runtime on k, as it is shown in Figure 8c. While with the Brightkite data
the slowest run of the algorithm was with k = 50, with the Gowalla data it
was with k = 30.

a) runtime with fixed k = 20, l = 10 b) runtime with fixed n = 3101, k = 20

c) runtime with fixed n = 3101, l = 10

Figure 8: Runtime measurement.

5.6. Limitations of the experiments

Both the location entropy edge selection and neighbourhood selection
in the (k, l)-degree anonymization algorithm were defined to increase the
probability that the anonymized G∗ would resembles the future development
of the network. Some of the newly added links are likely to really appear
in G in the future. Thus, it reduces the information loss caused by the
anonymization. To test the similarity of the anonymized G∗ at time t1 with
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the structure of G at time t2, it would be necessary to have several samples
of the same networks from different time periods. The requisite data were
not available in this research.

Although our experimental results indicate that the algorithm is feasible
on larger networks, the maximum tested network sample contains only 10,101
users. It was mainly caused by the limitations of the Matlab program and
data management in our implementation.

As it has been mentioned above, the top location model causes the infor-
mation loss, which was not measured. Future research could involve studying
and measuring the effect of the top location model on the data utility, as well
as considering other location models.

6. Conclusion

In this study, we addressed the problem of preserving individual’s privacy
in publishing the geosocial network datasets. The geosocial network was
represented as a combination of the social network and the affiliation net-
work connecting users with the checked-in locations. The new (k, l)-degree
anonymization method was introduced to prevent the re-identification attack
in geosocial networks. Two versions of the proposed algorithm, modifying
the edge set of the network, were analysed by running the experiments on
real-world datasets Gowalla and Brightkite.

The location entropy edge selection, used in the graph modification method,
was shown to improve the preservation of structural properties of the original
network in the anonymization process. Since the data utility were preserved
better in larger network samples, the algorithm is highly recommended for
testing in larger networks.

Future research will involve the analysis of the compatibility of the algo-
rithm with location generalization methods. Clustering locations into regions
according to their geographical coordinates will increase the initial vertex de-
gree of the location nodes and decrease the information loss in the anonymiza-
tion. In addition, it could focus on the application of other location models
for extracting representative locations for each user.
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Medková, J., 2018. Composition attack against social network data. Comput
Secur 74, 115–129. doi:10.1016/j.cose.2018.01.002.

Mislove, A., Marcon, M., Gummadi, K.P., Druschel, P., Bhattacharjee, B.,
2007. Measurement and analysis of online social networks, in: Proceedings
of the 7th ACM SIGCOMM Conference on Internet Measurement, ACM
Press. pp. 29–42. doi:10.1145/1298306.1298311.

Pontes, T., Vasconcelos, M., Almeida, J., Kumaraguru, P., Almeida, V.,
2012. We know where you live: Privacy characterization of foursquare
behavior, in: Proceedings of the 2012 ACM Conference on Ubiquitous
Computing, ACM Press. pp. 898–905. doi:10.1145/2370216.2370419.

Rahman, M., Ballesteros, J., Carbunar, B., Rishe, N., Vasilakos, A.V., 2013.
Toward preserving privacy and functionality in geosocial networks, in: Pro-
ceedings of the 19th Annual International Conference on Mobile Com-
puting & Networking, ACM Press. pp. 207–210. doi:10.1145/2500423.
2504577.

Scellato, S., Noulas, A., Mascolo, C., 2011. Exploiting place features in
link prediction on location-based social networks, in: Proceedings of the
17th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, ACM Press. pp. 1046–1054. doi:10.1145/2020408.2020575.

31

http://dx.doi.org/10.1145/1376616.1376629
http://dx.doi.org/10.1007/978-3-642-32600-4_21
http://dx.doi.org/10.1007/978-3-642-32600-4_21
http://dx.doi.org/10.1016/j.asoc.2017.08.027
http://dx.doi.org/10.1016/j.cose.2018.01.002
http://dx.doi.org/10.1145/1298306.1298311
http://dx.doi.org/10.1145/2370216.2370419
http://dx.doi.org/10.1145/2500423.2504577
http://dx.doi.org/10.1145/2500423.2504577
http://dx.doi.org/10.1145/2020408.2020575


Shokri, R., Theodorakopoulos, G., Le Boudec, J.Y., Hubaux, J.P., 2011.
Quantifying Location Privacy, in: 2011 IEEE Symposium on Security and
Privacy, IEEE. pp. 247–262. doi:10.1109/SP.2011.18.

Shokri, R., Theodorakopoulos, G., Troncoso, C., Hubaux, J.P., Le Boudec,
J.Y., 2012. Protecting location privacy: optimal strategy against local-
ization attacks, in: Proceedings of the 2012 ACM conference on Com-
puter and communications security - CCS ’12, ACM Press. pp. 617–627.
doi:10.1145/2382196.2382261.

Siddula, M., Li, L., Li, Y., 2018. An empirical study on the privacy
preservation of online social networks. IEEE Access 6, 19912–19922.
doi:10.1109/ACCESS.2018.2822693.

Wernke, M., Skvortsov, P., Drr, F., Rothermel, K., 2014. A classification of
location privacy attacks and approaches. Pers Ubiquit Comput 18, 163–
175. doi:10.1007/s00779-012-0633-z.

Xue, D., Wu, L.F., Li, H.B., Hong, Z., Zhou, Z.J., 2017. A novel des-
tination prediction attack and corresponding location privacy protection
method in geo-social networks. Int J Distrib Sens N 13. doi:10.1177/
1550147716685421.

Zhang, J.D., Ghinita, G., Chow, C.Y., 2014. Differentially Private Location
Recommendations in Geosocial Networks, in: 2014 IEEE 15th Interna-
tional Conference on Mobile Data Management, IEEE, Brisbane, Aus-
tralia. pp. 59–68. doi:10.1109/MDM.2014.13.

Zheleva, E., Sharara, H., Getoor, L., 2009. Co-evolution of social and af-
filiation networks, in: Proceedings of the 15th ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining, ACM Press.
pp. 1007–1016. doi:10.1145/1557019.1557128.

32

http://dx.doi.org/10.1109/SP.2011.18
http://dx.doi.org/10.1145/2382196.2382261
http://dx.doi.org/10.1109/ACCESS.2018.2822693
http://dx.doi.org/10.1007/s00779-012-0633-z
http://dx.doi.org/10.1177/1550147716685421
http://dx.doi.org/10.1177/1550147716685421
http://dx.doi.org/10.1109/MDM.2014.13
http://dx.doi.org/10.1145/1557019.1557128

	Introduction
	Related work
	Problem definition
	(k,l)-degree anonymization algorithm
	Heuristics in degree anonymization algorithm
	Social network modification algorithm with the location entropy selection
	Complexity

	Affiliation network modification algorithm with the neighbourhood selection
	Complexity


	Experimental results
	Tested networks and data preprocessing
	Top location model
	Measures
	Results evaluation
	Runtime
	Limitations of the experiments

	Conclusion

